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PLATES AND TANKS ON ELASTIC FOUNDATIONS-AN
APPLICATION OF FINITE ELEMENT METHOD·

Y. K. CHEUNG and O. C. ZmNKIEWICZ
Department of Civil Engineering, University of Wales, Swansea

Abstract-In this paper, the problems of slabs and tanks (either isotropic or orthotropic) resting either on a
semi-infinite elastic continuum or on individual springs (of the so-called Winkler's type) are solved by the
finite element method. Re-entrant corners, rigid walls on the slabs, concentrated moments due to bending of
columns, etc., involve little computational difficulty in the method presented.

1. INTRODUCTION
A DETAILED description of the finite element method for the analysis of elastic isotropic
and orthotropic slabs can be found in a previous paper by the authors [1]. The slab is
first divided into a number of small elements which are then joined at a discrete number
of nodal points where continuity and equilibrium conditions are established. From the
resulting equations the deformations can be determined. In the present case, the stiffness
coefficients of the foundation at the various nodes are simply added to those of the plate
elements. After the nodal displacements have been determined, the contact pressures and
the plate moments can be worked out easily by simple matrix operations.

In the problems of beams or plates resting on an elastic foundation different assump
tions have been introduced to simplify the mathematical formulation. The first of these
is that no separation occurs when negative reactions are present. This assumption is in
practice a reasonable one as usually the weight of the structure imposes an initial pre
compression.

The second assumption frequently made is less tenable. This assumes that no inter
action exists between adjacent points of the foundation and that this reacts as a series
of isolated springs. This so-called Winkler's foundation is obviously a fiction when true
subgrades are considered. Many authors have tried to justify this for special cases but
the errors involved are of a serious nature. It will be shown that, in the proposed approach,
little additional difficulty is experienced in treating the foundation as a continuum.

The problem of beams on elastic foundation both of continuum and of Winkler type
have been extensively investigated by Hetenyi [2], Zemochkin [31 Chai [4] and many
others, while that of plates and tanks on elastic foundation has received scant attention,
Holl [5] solved the problem of an infinite plate on an elastic half-space under axi
symmetrical loadings, while Naghdi and Rowley [6], Pickett and McCormick [7], and
Frederick [8] tackled finite and infinite plates on Winkler's type of foundation. Vint
and Elgood [9] dealt with a finite rectangular plate on Winkler's foundation by the
Raleigh-Ritz method, while Allen and Severn [10] solved the same problem, but with more

* This paper forms a part of Cheung's Ph.D. thesis which was submitted to the University of Wales in
September, 1964.
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complex boundary conditions, by relaxation of two second order differential equations.
Recently James [11] solved a finite rectangular plate on elastic half-space by finite
differences.

2. FOUNDATION STIFFNESS MATRICES

(a) Winkler'sjoundation

In Winkler's foundation, the contact pressure p is regarded as being proportional to
the deflection w, or simply

p = kw (1)

where k is the modulus of subgrade reaction.
Such property is in fact exhibited by a foundation of a heavy liquid type, or by a

foundation consisting of independent springs.
For a division into rectangular finite element mesh (Fig. 1) with sides a and b, equation

(1) can be rewritten as

Pj = (J..jabkiwj

a
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FIG. I. A plate and its foundation.

(2)

where P j is the normal force at node i and aj is a coefficient which takes the value of *
at corners, ! at the sides, 1 at interior nodes and i at right angled re-entrant comers to
account for the area contributing to the nodal forces.

In matrix form, this can be written as

[P] = abk[a]{w}

in which (J.. is a purely diagonal matrix.

(3)

(b) Isotropic elastic half-space

In this treatment which now allows for an interaction of the various parts of the
foundation it is convenient to assume a constant pressure acting on the rectangle a x b
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b

(5)

around each nodal point. This pressure will have now a magnitude of P;/ab, and will vary
from node to node.

The deflection of any point n due to a point load at i on an isotropic elastic half-sapce
is given by the Boussinesq equation

F(l - v6)
~= ~

nEorn

where Vo is the Poisson's ratio of the foundation, Eo is the Young's modulus of the
foundation and rn is the radial distance between points i and n.

~/VXf~
~k

I. a .1
f' ...~

('7, 7)

---r- ;-.----+- ---"' ~7)

FIG. 2. Vertical displacements due to uniformly loaded rectangular area on isotropic half-space.

The deflection at the centre of the uniformly loaded rectangular area a x b can be
obtained by integrating equation (4) over the rectangular area (Fig. 2)

w.. = 2J;;QI2 2J~;bI2 Pi(1-V6) de dl1 = Pi(1-v6) ..
II abnE 1(J'2 +",2) anE h,·

;;0 ~;o tOY"·/ 0

Some values ofhi are given in Table 1 for various ratios of b/a.

TABLE I

b/a 2/3

4·265 3·525

2

2-406

3

1·867

4

1·543

5

1-322

(6)

For a point outside the loaded area, the same integration can be done, but a good
enough approximation can be achieved by using equation (4), where F is now the total
load over the rectangle, i.e. P;, and rn the centre to centre distance. Some exact results
for hi are given in Table 2 and are compared with the approximate values. It can be seen
that even for x = a, the error is only some 4 per cent, and that it decreases rapidly with
increase of x.

Therefore, for any set of grid points, the deflections can be written as

{w} = (1-v6)[j ]{P}
nEoa f
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TABLE 2

x/a 2 3 4 5 6 7 8 9 10

Exact 1-G38 0·505 0·333 0'251 0·200 0·167 0'143 0·125 0·111 0'100

Approx. 1·000 0·500 0·333 0'250 0·200 0·167 0·143 0·125 0'111 0'100

where Uj] is the flexibility matrix of the foundation, obtained for off-diagonal terms by
(4) and for diagonal terms by (5). Inverting one can write

nEoa
{P} = (l_v~)[Kf]{W} (7)

where [Kf ] = [fjr l
.

3. THE COMPLETE STIFFNESS FORMULATION

This matrix has now to be combined with that ofa plate subdivided into finite elements.
In reference (1) such a matrix is given in equation (8) connecting the nodal forces Nand
displacements U

{N} = [S]{U}. (8)

For each nodal force N i and displacement {Ui} three components are present. These
correspond to lateral displacement Wi and two rotations 0xi and Oyi' As no angular
continuity is assumed between the foundation and the plate it is possible by partial in
version to eliminate the rotations and corresponding moments from the above relation.
Noting that if Qi represents an external applied load to a node Qi - Pi is the effective
external force acting on that node and we can write, for an isotropic plate

D
{Q}-{P} = 15ab[Kp ]{w} (9)

in which D is the plate rigidity equal to

12(1- v;,.
Thus for example, for a foundation of the Winkler type we have on eliminating P by the
use of equation (3)

{Q} = l~b([Kp]+ l~babk[a])rW}

D
= 15ab([Kp]+k[aD{w}.

Similarly for an isotropic half-space

D ~ 15ab nEoa ~
{Q} = 15ab\[Kp]+D (1_ V5)[K j l/W}

D
= 15ab([Kp]+y[K j ]){w}

(10)

(11)
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4. SOLUTION
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A direct solution of equations (10) and (11) gives the deflections, which in tum will
give bending moments of the slab and the contact pressures.

However, if only the contact pressure is required, as often is the case, we can simplify
the procedure. For the case of elastic half-space we have from (9) and (6)

D
{Q}-{P} = 15ab[Kp ]{w}

= D(I-v~) [K ][1 ]{P}
151Ul2bEo p I

or

(14)

where [I] is the unit matrix.
The solution of equation (14) yields [P], and the contact pressures can be obtained'

by dividing by the appropriate areas. This approach saves the inversion of the [II]
matrix.

~/

-y

FIG. 3. Tank on elastic foundation.
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5. TANKS ON AN ELASTIC FOUNDATION

The finite element method described can be extended to deal with such problems as
tanks on elastic foundations, Fig. 3. Here the horizontal elements of the base slab are
coupled with vertical ones at the side walls by appropriately re-orientating the forces
at the nodes where the junction occurs.

Clearly 'in plane' forces now arise both in the wall and base slabs and in principle
it would appear necessary to include their effect on deformation.

It is, however, well known that in such structures the major part of deformation is
due to bending and it is customary to neglect the 'in plane' extensions. This introduces
certain special features required in the solution. In particular if no 'in plane' deformation
occurs the vertical deformations of the foundation slab must vary linearly along its
edge.

Similar conditions will pertain along the vertical sides.
Such additional relations are necessary to eliminate certain unknowns from that

system of displacement equations which can then be solved in the normal manner.

6. NUMERICAL EXAMPLES

(a) Uniformly loaded square plate on isotropic half-space
A series of computations were carried out, and the average contact pressures at

several chosen points are plotted against the logarithms of the relative rigidity
y = 180n(Eo/E p)(a/t)3*, as shown in Figs. 4 and 5. As is expected, the contact pressures

o 0·5 1·5 2 2'5

log (1801J' f:(~)3)

FIG. 4. Contact pressures of uniformly loaded square plate on isotropic half-space at points 1, 2 and 3 for various
values of y.

* In this case 1- v;/l- V5 is taken as unity.
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FIG. 5. Contact pressure variation alQng centre line of plate under uniform load q.
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FIG. 6. Contact pressures of square plate on isotropic half-space with concentrated toad at centre (P) at points
I, 2 and 3 for various values of y.
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approach a very high value at the corner (infinity for an exact solution) for the case of a
rigid plate, and they all converge to the same value, equal to that of the uniform load,
when the plate is very flexible.

This simple example illustrates the danger of using indiscriminately the Winkler
approximation which now gives the trivial answer of uniform load whatever the plate
stiffness.

10
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FIG. 7. Contact pressure variation along centre line of plate on isotropic half-space under concentrated load P,

(b) Square plate on isotropic half-space with a concentrated load at centre (Figs. 6 and 7)

The average contact pressures are again plotted against the relative rigidities
y = 180n(EoIEp)(a/t)3 and the results are again not unexpected. For the case of a very
flexible plate, the contact pressure at the centre reaches a very high value, as the plate now
offers very little help in spreading out the load.

For comparison the contact pressure variation along the centre line of the same plate
but resting on a Winkler type foundation is shown in Fig. 8.

Many authors have endeavoured to obtain equivalence between the Winkler type
constants and the moduli of the foundation continuum. The temptation to do so here
is resisted as it is clear that such comparative figures can only be valid for very limited
ranges of plate size and loading.

(c) Deformation of a plate with four loads and supported in springs (Fig. 9)

This simple case appeared to be one of the few cases listed in the literature for which
actual solutions have been computed and tested on experiment and therefore, was chosen
for comparative purposes.
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FIG" 8. Contact pressure variation along centre line of plate on springs under concentrated load P.

The deflections are worked out by the finite element method and compared with
those presented by Vint and Elgood [9] in Table 3. The agreement is excellent even
though the mesh used is only 6 x 6 for the whole plate. It is worth noting that here the
actual loading locations fall between the nodes and the loads have to be distributed to
the surrounQing nodes by suitable static apportioning.
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FIG. 9. Deformation of a plate with four loads and supported on springs.
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TABLE 3

Raleigh-Ritz [9]
Experimental [9]
Finite element 6 x 6

Multiplier

0·1457
0·1440
0·1465

0'1338
0·1365
0·1359

inches

0·1283
0·1270
0'1277

0'1175
0·1213
0'1183

.!:
"-
.E
I -5

£I

-- Spring constant = 10·5 Ib /in 3

\- - Spring constant =55·1 Ib/in 3

~

I,

I
Bending moment

or--------~"""<::::__---_I---
0·5 ._---e_ .

,/ /" -- x- - x-";-==-===----1
,

I
"I

Reaction of springs

FIG. 10. Bending moment of base slab and spring reaction along centre line.

TABLE 4

Spring constant 10·5Ib/in. 3 19·5Ib/in. 3

W, "'2 M X1 M X2 WI "'2 M xl M X2

Experimental 0·322 -10,55 0·555 -10·60
Kantorovich 104 42 -(,349 -10,62 63 35 -0·593 -11·19
Finite element 6 x 6 99 65 -1,37 -10,55 58 33 -0·32 -11,13

Multiplier 10- 3 in. Ib in./in. 10- 3 in. Ib in./in.

Spring constant 30'6 Ib/in. 3 55·1 Ib/in. 3

WI W2 M XI M X2 W, W2 M X1 M X2

Experimental 0'680 -11,50 1·09 -12,50
Kantorovich 45 27 -0'440 -!l·90 24 13 0·34 -13-16
Finite element 6 x 6 39 21 0'37 -11·57 24 12 0·91 -12'14

Multiplier 10- 3 in. Ib in./in. 10- 3 in. Ib in./in.
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(d) Square tank on springs (Fig. 8)
A square tank on springs and under hydrostatic loading is analysed for four different

spring constants, the deflections and moments are compared with those obtained by
Long [12], and, as can be seen from Table 4, the agreement is very good.

No difficulty will be encountered if a tank with a roof or a rectangular tank is used.

7, CONCLUSIONS

As seen from the examples quoted, the finite element procedure leads to very accurate
results and presents no difficulties whatever kind of elastic foundation behaviour is
assumed. Clearly this being the case, Winkler type spring approximation introduced to
avoid mathematical difficulties need no longer be used where continuous foundations
are presented.

It would have been observed that no special treatment of holes, corners or other
irregularities in the plate is necessary and that therefore practical cases such as variable
thickness foundation rafts, etc., are now capable of rapid solution.
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Resume-Dans cette etude, Ies problemes de plaques et de reservoirs (isotropes ou orthotropes), reposant
soit sur un continuum elastique semi-infini soit sur ressorts individuels (du type que l'on appelle Winkler),
sont resolus par la methode a element fini. Des coins rentrants, des murs rigides sur plaques, des moments
concentres dus a la flexion de co1onnes, etc., comportent peu de difficultes de calcul dans la methode avancee.

AficrpaKT-B HaCTollUIelt pa60Te np0611eMa IlJIHT HJIH 6aKoB (H30TponHbIx H1IH opTOTPOnHbIx) nOKOfO
UIHXCli Ha n01ly-6ecKoHe'lHoM :maCTH'IHOM KOHTHHyyMe H1IH Ha OTJle1lbHbIX npylkHHax (TaK Ha3bIBaeMbIe
"THna BHHKJIep") pa3peUIeHa MeTOJlOM KOHe'lHOrO :meMeHTa. BXOAllUIHe yr1lbI, lKecTKHe CTeHKH IlJIHT,
KOHueHTpHpOBaHHbIe MOMeHTbI 06ycnoaneHHbIe H3rH6aHHeM K01l0HOK, H Ln.-see lTO B1Ie'leT 1IHUIb
He3Ha'lHTeJIbHble BbI'IHCJIHTeJIbHbIe 3aTPY,£IHeHHJI UpH npHMeHeHHH JlaHHOrO MeTo,na.


